

Universidade do Minho Escola de Ciências

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS partículas e tecnologia

EFT studies in the top quark sector (and beyond)

Nuno Castro

nuno.castro@cern.ch

Energy Frontier Workshop - Restart [Snowmass] virtual world, September 2nd 2021

in the top-quark sector (and beyond)

- An EFT approach in top-quark sector is being pursued at the LHC since almost the beginning of data taking
 - using precision measurements and searches for rare events as a probe for physics beyond the Standard Model
 - Experience in the LHC top WG and, more recently, in the LHC EFT WG

SM effective field theory:

$$\mathcal{L}_{ ext{eff}} = \mathcal{L}_{ ext{SM}} + \sum_i rac{c_i}{\Lambda^2} \mathcal{O}_i$$

typically assuming $\Lambda = 1 \text{ TeV}$

Effective field theory in the top-quark sector (and beyond)

LHC HXS WG LHC top WG LHC EFT WG Top related EFT matters: LHC top WG https://lpcc.web.cern.ch/lhc-top-wg-wg-top-physics-lhc LHC EW WG General EFT matters: LHC EFT WG https://lpcc.web.cern.ch/lhc-eft-wq

3

Effective field theory in the top quark sector tt operators

Observables: Rate, Distribution, Asymmetries, Polarization, Spin correlation

$$O_{Qq}^{1,1} = (\bar{Q}\gamma_{\mu}Q)(\bar{q}_{i}\gamma^{\mu}q_{i})$$

$$O_{Qq}^{3,1} = (\bar{Q}\gamma_{\mu}\tau^{I}Q)(\bar{q}_{i}\gamma^{\mu}\tau^{I}q_{i})$$

$$O_{tu}^{1} = (\bar{t}\gamma_{\mu}t)(\bar{u}_{i}\gamma^{\mu}u_{i})$$

$$O_{td}^{1} = (\bar{t}\gamma^{\mu}t)(\bar{d}_{i}\gamma_{\mu}d_{i});$$

$$O_{Qu}^{1} = (\bar{Q}\gamma^{\mu}Q)(\bar{u}_{i}\gamma_{\mu}u_{i})$$

$$O_{Qd}^{1} = (\bar{Q}\gamma^{\mu}Q)(\bar{d}_{i}\gamma_{\mu}d_{i})$$

$$O_{td}^{1} = (\bar{q}\gamma^{\mu}Q)(\bar{d}_{i}\gamma_{\mu}d_{i})$$

$$O_{td}^{1} = (\bar{q}\gamma^{\mu}Q)(\bar{d}_{i}\gamma_{\mu}d_{i});$$

Four-fermion in V/A basis

$$\begin{array}{ll} O_{tG} = (\bar{Q}\sigma^{\mu\nu}T^At)\,\widetilde{\phi}\,G^A_{\mu\nu} & \text{Quadratic} \\ O^{1,8}_{Qq} = (\bar{Q}\gamma_{\mu}T^AQ)(\bar{q}_i\gamma^{\mu}T^Aq_i) & O^{1,1}_{Qq} = (\bar{Q}\gamma_{\mu}Q)(\bar{q}_i\gamma^{\mu}q_i) \\ O^{3,8}_{Qq} = (\bar{Q}\gamma_{\mu}T^A\tau^IQ)(\bar{q}_i\gamma^{\mu}T^A\tau^Iq_i) & O^{3,1}_{Qq} = (\bar{Q}\gamma_{\mu}\tau^IQ)(\bar{q}_i\gamma^{\mu}\tau^Iq_i) \\ O^{8}_{tu} = (\bar{t}\gamma_{\mu}T^At)(\bar{u}_i\gamma^{\mu}T^Au_i) & O^{1}_{tu} = (\bar{t}\gamma_{\mu}t)(\bar{u}_i\gamma^{\mu}u_i) \\ O^{8}_{td} = (\bar{t}\gamma^{\mu}T^At)(\bar{d}_i\gamma_{\mu}T^Ad_i) & O^{1}_{td} = (\bar{t}\gamma^{\mu}t)(\bar{d}_i\gamma_{\mu}d_i) \\ O^{8}_{td} = (\bar{t}\gamma^{\mu}T^Ac)(\bar{d}_i\gamma_{\mu}T^Ad_i) & O^{1}_{td} = (\bar{t}\gamma^{\mu}t)(\bar{d}_i\gamma_{\mu}d_i) \\ O^{8}_{td} = (\bar{t}\gamma^{\mu}T^Ac)(\bar{d}_i\gamma_{\mu}T^Ac)(\bar{d}_i\gamma_{\mu}T^Ac)(\bar{d}_i\gamma_{\mu}d_i) \\ O^{8}_{td} = (\bar{t}\gamma^{\mu}T^Ac)(\bar{d}_i\gamma_{\mu}T^Ac)(\bar{d}_i\gamma_{\mu}T^Ac)(\bar{d}_i\gamma_{\mu}T^Ac)(\bar{d}_i\gamma_{\mu}d_i) \\ O^{8}_{td} = (\bar{t}\gamma^{\mu}T^Ac)(\bar{d}_i\gamma_{\mu}T^Ac)(\bar{d}_i$$

Similar for down-type quarks and color singlets

- Hadronically decaying boosted top quarks
 - p_τ ≥ 300 GeV
 - decay products start to overlap different identification methods are needed
 - o new physics can alter top quark production especially in the boosted phase space
 - boosted top quarks identified within large-R jets
 - reduced combinatorics
 - possibility to use large-R jet triggers

[ATLAS-CONF-2021-031]

- Unfolded to particle level using iterative Bayesian unfolding
- Main uncertainty: Signal modeling

[ATLAS-CONF-2021-031]

$$\sigma^{j}(C_{tG},C_{tq}^{(8)}) = p_{0}^{j} + p_{1}^{j} \cdot C_{tG} + p_{2}^{j} \cdot C_{tq}^{(8)} + p_{3}^{j} \cdot (C_{tG})^{2} + p_{4}^{j} \cdot (C_{tq}^{(8)})^{2} + p_{5}^{j} \cdot C_{tG} \cdot C_{tq}^{(8)}$$

SM simulation

[ATLAS-CONF-2021-031]

Wilson coefficient	Marginalised	95% intervals	Ind	lividual 95% in	tervals
wnson coemcient	Expected	Observed	Expected	Observed	Global fit [2105.00006]
C_{tG}	[-0.44, 0.44]	[-0.68, 0.21]	[-0.41, 0.42]	[-0.63, 0.20]	[0.007, 0.111]
$C_{tq}^{(8)}$	[-0.35, 0.35]	[-0.30, 0.36]	[-0.35, 0.36]	[-0.34, 0.27]	[-0.40, 0.61]

single top operators

[slide by Cen Zhang]

10

polarization in single top events

• simultaneous measurement of the three components of the top-quark and top-antiquark polarisation vectors in t-channel single top production

[ATLAS-CONF-2021-027]

polarization in single top events

$$\begin{split} \sigma(C_{tW},C_{itW}) &\propto \left| O_{\text{SM}} + \frac{C_{tW}}{\Lambda^2} \cdot O_{tW} + \frac{C_{itW}}{\Lambda^2} \cdot O_{itW} \right|_{\text{production}}^2 \cdot \left| O_{\text{SM}} + \frac{C_{tW}}{\Lambda^2} \cdot O_{tW} + \frac{C_{itW}}{\Lambda^2} \cdot O_{itW} \right|_{\text{decay}}^2 \\ &= \sigma_1 + \left(C_{tW}^1 \cdot \sigma_2 + C_{itW}^1 \cdot \sigma_3 \right) / \Lambda^2 \\ &+ \left(C_{tW}^2 \cdot \sigma_4 + C_{itW}^2 \cdot \sigma_5 + C_{tW}^1 C_{itW}^1 \cdot \sigma_6 \right) / \Lambda^4 \\ &+ \left(C_{tW}^3 \cdot \sigma_7 + C_{itW}^3 \cdot \sigma_8 + C_{tW}^2 C_{itW}^1 \cdot \sigma_9 + C_{tW}^1 C_{itW}^2 \cdot \sigma_{10} \right) / \Lambda^6 \\ &+ \left(C_{tW}^4 \cdot \sigma_{11} + C_{itW}^4 \cdot \sigma_{12} + C_{tW}^3 C_{itW}^1 \cdot \sigma_{13} + C_{tW}^1 C_{itW}^3 \cdot \sigma_{14} + C_{tW}^2 C_{itW}^2 \cdot \sigma_{15} \right) / \Lambda^8. \end{split}$$

 the effect of non-zero EFT coefficients on the background subtraction was observed to be smaller than the measurement uncertainties

ATLAS-CONF-2021-027

polarization in single top events

	Ct	:W	$ m C_{itW}$			
	$68\%~\mathrm{CL}$	$95\%~\mathrm{CL}$	$68\%~\mathrm{CL}$	$95\%~\mathrm{CL}$		
All terms	[-0.2, 0.9]	[-0.7, 1.5]	[-0.5, -0.1]	[-0.7, 0.2]		
Order $1/\Lambda^4$	[-0.2, 0.9]	[-0.7, 1.5]	[-0.5, -0.1]	[-0.7, 0.2]		
Order $1/\Lambda^2$	[-0.2, 1.0]	[-0.7, 1.7]	[-0.5, -0.1]	[-0.8, 0.2]		

[ATLAS-CONF-2021-027]

ttV operators

ttbar+Z/y: access to neutral top-EW vertex ttZ/tty

$$\begin{array}{c|c} \text{``Dim-4''} & \text{Dipole} & \text{Dofs} \\ \hline O_{\phi Q}^1 = (\phi^\dagger i \stackrel{\longleftrightarrow}{D_\mu} \phi) (\bar{Q} \gamma^\mu Q) & \dagger O_{tB} = (\bar{Q} \sigma^{\mu\nu} t) \stackrel{\longleftrightarrow}{\phi} B_{\mu\nu} \\ \hline O_{\phi Q}^3 = (\phi^\dagger i \stackrel{\longleftrightarrow}{D_\mu} \phi) (\bar{Q} \gamma^\mu \tau^I Q) & \dagger O_{tW} = (\bar{Q} \sigma^{\mu\nu} t) \tau^I \stackrel{\longleftrightarrow}{\phi} W_{\mu\nu}^I \\ \hline O_{\phi t} = (\phi^\dagger i \stackrel{\longleftrightarrow}{D_\mu} \phi) (\bar{t} \gamma^\mu t) & O_{tG} = (\bar{Q} \sigma^{\mu\nu} T^A t) \stackrel{\longleftrightarrow}{\phi} G_{\mu\nu}^A \\ \hline \end{array} \right)$$

Dipole
$$^{\dagger}O_{tB}=(\bar{Q}\sigma^{\mu\nu}t)\,\widetilde{\phi}\,B_{\mu\nu}$$

$$^{\dagger}O_{tW}=(\bar{Q}\sigma^{\mu\nu}t)\,\tau^{I}\widetilde{\phi}\,W_{\mu\nu}^{I}$$

$$O_{tG}=(\bar{Q}\sigma^{\mu\nu}T^{A}t)\,\widetilde{\phi}\,G_{\mu\nu}^{A}$$

14 [slide by Cen Zhang]

single lepton + photon events

Reg	gion	N_ℓ	$N_{\rm j}$	$N_{\rm b}$	N_{γ}	Other requirements
CD2m	SR3	1	3	≥1	1	
SR3p	SR4p	1	≥ 4	≥ 1	1	
LM3p	LM3	1	3	0	1	$m(e, \gamma) < m_Z - 10 \text{GeV},$ $m(\mu, \gamma) < m_Z$
LMSp	LM4p	1	\geq 4	0	1	$m(e, \gamma) < m_Z - 10 \text{GeV}, \ m(\mu, \gamma) < m_Z$
НМ3р	НМ3	1	3	0	1	$m(e, \gamma) > m_Z + 10 \text{GeV},$ $m(\mu, \gamma) > m_Z$
тимэр	HM4p	1	\geq 4	0	1	$m(e, \gamma) > m_Z + 10 \text{GeV},$ $m(\mu, \gamma) > m_Z$
micDV2n	misDY3	1	3	0	1	$ m(e, \gamma) - m_Z \le 10 \text{GeV}$
misDY3p	misDY4p	1	≥ 4	0	1	$ m(e, \gamma) - m_Z \le 10 \text{GeV}$

$$\begin{split} & c_{\mathrm{tZ}} = \mathrm{Re} \left(-\sin \theta_{\mathrm{W}} C_{\mathrm{uB}}^{(33)} + \cos \theta_{\mathrm{W}} C_{\mathrm{uW}}^{(33)} \right), \\ & c_{\mathrm{tZ}}^{\mathrm{I}} = \mathrm{Im} \left(-\sin \theta_{\mathrm{W}} C_{\mathrm{uB}}^{(33)} + \cos \theta_{\mathrm{W}} C_{\mathrm{uW}}^{(33)} \right), \\ & c_{\mathrm{t}\gamma} = \mathrm{Re} \left(\cos \theta_{\mathrm{W}} C_{\mathrm{uB}}^{(33)} + \sin \theta_{\mathrm{W}} C_{\mathrm{uW}}^{(33)} \right), \\ & c_{\mathrm{t}\gamma}^{\mathrm{I}} = \mathrm{Im} \left(\cos \theta_{\mathrm{W}} C_{\mathrm{uB}}^{(33)} + \sin \theta_{\mathrm{W}} C_{\mathrm{uW}}^{(33)} \right), \end{split}$$

[CERN-EP-2021-117]

[CERN-EP-2021-117]

targeting events with 3 or 4 charged leptons

Selection requirement	SR-3 ℓ	SR-t $\bar{t}Z$ -4 ℓ	WZ CR	ZZ CR
Lepton multiplicity	=3	=4	=3	=4
$m_{3\ell}-m_{\rm Z}$	_		>15 GeV	_
Z boson candidates multiplicity	=1	=1	=1	=2
Jet multiplicity	\geq 2	\geq 2	_	_
b jet multiplicity	≥ 1	≥1	=0	_
$p_{ m T}^{ m miss}$	_	_	>50 GeV	_

 NNs used to separate signal from back. and to enhance the sensitivity to new phenomena arising from the EFT operators of interest

[CERN-EP-2021-126]

Operator	WC	Mapping to Warsaw-basis coefficients
\mathcal{O}_{tZ}	c_{tZ}	$\text{Re}\left\{-s_{W}c_{\text{uB}}^{(33)}+c_{W}c_{\text{uW}}^{(33)}\right\}$
\mathcal{O}_{tW}	c_{tW}	$\operatorname{Re}\left\{c_{\mathrm{uW}}^{(33)}\right\}$
${\cal O}_{ m \phi Q}^3$	$c_{ m tW}$ $c_{ m \phi Q}^3$	$c_{\varphi q}^{3(33)}$
${\cal O}_{arphi { m Q}}^{-}$	$c_{\varphi Q}^{-}$	$c_{arphi ext{q}}^{1(33)} - c_{arphi ext{q}}^{3(33)}$
${\cal O}_{arphi { m t}}$	$c_{arphi ext{t}}$	$c_{arphi \mathrm{u}}^{(33)}$

Variable	NN-SM	NN-c _{tZ} -tZq	NN-c _{tZ} -tŧZ	NN-c _{tw} -tZq	NN-c _{tw} -t ī Z	NN- $c_{\phi \mathrm{Q}}^3$ -tZq	NN- $c_{\phi \mathrm{Q}}^3$ -t $\mathrm{t}\mathrm{Z}$	NN-5D-tZq	NN-5D-tĒZ
$p_{\mathrm{T}}^{\mathrm{Z}}$	_	✓	√	\checkmark	✓	√	\checkmark	\checkmark	√
$\eta(Z)$	V	V	√	_	_	√	_	_	√
$\Delta\phi(\ell_1^Z\ell_2^Z)$	V	V	V	√	V	√	✓	V	V
$p_{\mathrm{T}}(\mathbf{t})$	√	V	V	_	V	V	_	√	V
$\eta(t)$	_	V	✓	V	V	V		_	V
m(t,Z)	_	_	_		_			_	_
$ \eta(j') $	V	_	_	_	_		_	V	_
$p_{\mathrm{T}}(j') \ \Delta R(b,\ell_{\mathrm{t}})$	V	v	_	v	_	_	_	_	_
$\Delta R(j', \ell_t)$		<u> </u>		<u> </u>					
$\Delta R(t, Z)$	<u> </u>						_		
$\Delta R(t, Z)$ $\Delta \eta(Z, j')$./	_	_		_	_	./	_
ΔR between t and the closest lepton	_	· /	_	1	_	_		_	_
ΔR between j' and the closest lepton	_	_	_	_	_	_	_	1	_
$m_{3\ell}$	1	_	_	_	1	_	✓	_	√
$m_{ m T}^{ m W}$, /	1	1	_	_	_	_	_	· /
$p_{\mathrm{T}}^{\mathrm{miss}}$	· /	_	_	_	_	_		_	_
Lepton asymmetry	· ✓	_	_	√	\checkmark	_	_	\checkmark	_
$\cos heta_{Z}^{\star}$	_	_	\checkmark	_	_	\checkmark		_	\checkmark
Max. $p_{\rm T}$ among jet pairs	_	_	_	_	_	_	\checkmark	_	\checkmark
Max. DEEPJET discriminant	\checkmark	_	_	_	_	_	_	_	_
b jet multiplicity	\checkmark	_	_	_	_	_	_	_	_
Three-momenta of the three leading leptons	\checkmark	_	_	_	_	_		_	_
Three-momenta of the three leading jets	\checkmark	_	_	_	_	_	_	_	_
DEEPJET discriminants of the three leading jets	\checkmark	_	_	_	_	_	_	_	_
Number of variables	33	11	8	8	6	7	4	7	10

Fit configuration		Re	egion			
	SR-tZq	SR-t t Z	SR-Others	SR-t $\bar{t}Z$ -4 ℓ	CR WZ	CR ZZ
$1D c_{tZ}$	$NN-c_{tZ}$ -tZq	$NN-c_{tZ}-t\bar{t}Z$				
$1D c_{tW}$	$NN-c_{tW}-tZq$	$NN-c_{tW}-t\bar{t}Z$				
$1D c_{\varphi Q}^3$	$NN-c_{\varphi O}^3$ -tZq	$NN-c_{\varphi O}^3$ -t $\bar{t}Z$	$m_{\mathrm{T}}^{\mathrm{W}}$	Countin	ng experin	nants
$1D c_{\varphi Q}^{-1}$	NN-SM (tZq node)	NN-SM (tīZ node)	$m_{ m T}$	Countin	ig experm	icitis
$1D c_{\varphi t}$	NN-SM (tZq node)	NN-SM (tīZ node)				
2D and 5D	NN-5D-tZq	NN-5D-tīZ				

WC/Λ^2	95% CL confidence i	ntervals	
$[\text{TeV}^{-2}]$	Other WCs fixed to SM	5D fit	
	Expected Observed	Expected	Observed
c_{tZ}	[-0.97, 0.96] $[-0.76, 0.71]$	[-1.24, 1.17]	[-0.85, 0.76]
c_{tW}	[-0.76, 0.74] $[-0.52, 0.52]$	[-0.96, 0.93]	[-0.69, 0.70]
$c_{\varphi \mathrm{Q}}^3$	[-1.39, 1.25] $[-1.10, 1.41]$	[-1.91, 1.36]	[-1.26, 1.43]
$c_{\varphi O}^{-}$	[-2.86, 2.33] $[-3.00, 2.29]$	[-6.06, 14.09]	[-7.09, 14.76]
$c_{ ext{tW}} \ c_{ ext{tW}}^3 \ c_{ ext{\varphi}Q} \ c_{ ext{\varphi}Q} \ c_{ ext{\varphi}t}$	$[-3.70, 3.71]$ $[-21.65, -14.61] \cup [-2.06, 2.69]$	[-16.18, 10.46]	[-19.15, 10.34]

summary

- In the absence of evidence for BSM physics in collider data (so far..), EFT is a powerful tool to look for subtle deviations from the SM in data
- EFT in the top quark sector (and beyond) is an hot topic, with the experimental and the theory communities engaged
 - focus changing to global fits

Thanks for your attention

Questions?

you can always reach me at nuno.castro@cern.ch

Effective field theory LHC *top* WG

Interpreting top-quark LHC measurements in the standard-model effective field theory

J. A. Aguilar Saavedra, ¹ C. Degrande, ² G. Durieux, ³ F. Maltoni, ⁴ E. Vryonidon, ² C. Zhang, ³ (editors), D. Barducci, ⁴ I. Brivio, ⁵ V. Griglano, ³ W. Dekors, ³ J. de Vries, ¹⁰ C. Englert, ¹¹ M. Habbirchesl, ⁵ C. Grojean, ¹⁰ U. Haisch, ²⁰ Y. Jiang, ⁷ J. Kamenik, ¹⁰ M. Mangano, ⁷ D. Marzocca, ¹ E. Merghetti, ¹ K. Mimasu, ¹ L. Moore, ⁷ C. Perez, ¹⁰ T. Plehn, ⁸ F. Riva, ⁸ M. Russell, ⁸ J. Santiago, ¹⁰ M. Schulze, ¹⁰ Y. Soreq, ²⁰ A. Toenero, ²⁰ M. Tott, ⁷ S. Weshfol, ¹⁸ C. Whitz, ²⁰ A. Wulzer, ^{20,30} J. Zupan, ²⁰

- LHC top WG has been considering EFT interpretations for a number of years (first papers in 2008-9)
 - o Main highlight is https://arxiv.org/abs/1802.07237: 'top EFT white paper'
 - Wonderful example of collaboration across theorists with input from experimentalists!
- Main points from that document
 - Warsaw basis
 - 3 different flavour assumptions
 - Default: minimal flavour violation in the quark sector (less and more restrictive are considered as alternatives): $U(2)q \times U(2)u \times U(2)d$
 - FCNC is treated separately
 - Identify the linear combinations of Warsaw-basis operators that appear in interferences with SM amplitudes and in interactions with physical fields after electroweak symmetry breaking (notation and normalisation agreed upon)
- Main limitations
 - o "Our discussion exclusively concerns processes involving at least a top quark" → work towards global fits (LHC *EFT* WG)
 - For now: tree-level description only
 - NLO work ongoing

Effective field theory LHC *EFT* WG

- Dedicated meetings in 6 areas:
 - Area 1: EFT Formalism
 - Area 2: Predictions and Tools
 - Area 3: Experimental Measurements and Observables
 - Area 4: Fits and Related Systematics
 - Area 5: Benchmark Scenarios from UV Models
 - Area 6: Flavour Physics
- Write-ups being prepared

```
June 2021
   28 Jun Area 1, EFT formalism
May 2021
   03 May 2nd General Meeting of the LHC EFT Working Group
April 2021
    12 Apr Area 6 meeting: Heavy flavour aspects in EFT fits
February 2021
   22 Feb Areas 3&4 meeting: experimental measurements, fits and related systematics
   08 Feb Area 5 meeting: Benchmark scenarios from UV models
January 2021
    27 Jan Area 4 meeting: fits and related systematics
    19 Jan Area 1, EFT formalism: follow-up meeting
    11 Jan Area 3 meeting; experimental measurements and observables
December 2020
    14 Dec Area 2 meeting: predictions and tools
   07 Dec Area 1 meeting: EFT formalism
October 2020
   19 Oct - 20 Oct 1st General Meeting of the LHC EFT Working Group
April 2020
   17 Apr LHC EFT Working Group: preliminary open discussion
```

https://indico.cern.ch/category/12671/

- Area 1: EFT Formalism
 - Common conventions, translations, common EW inputs
 - scheme $\{G_u, m_Z, m_W\}$ is preferred
 - conversion rules exist
 - Flavour structures, classes of BSM, symmetries
 - Truncation, uncertainties, validity
 - SMEFT truncation of interest is at the level of dim-6 operators. Two proposals:
 - linear+quadratic dim-6 as nominal + compare with linear-only dim-6
 - linear dim-6 as nominal + uncertainty constructed from known quadratic dim-6 and dim-8 contributions
 - provide experimental results as functions of the maximal energy probed in the data employed, Ecut
 - no final recommendations so far
 - Theory constraints unitarity, positivity, incorporation in fits

- Area 2: Predictions and Tools
 - O Presented review of the tools:
 - UFO models: SMEFTsim, SMEFT@NLO
 - MC generators for SMEFT: MadGraph5_aMC@NLO, Sherpa, JHUGen, Powheg, VBF@NLO
 - LHC top WG guidelines for EFT: dim6top and SMEFTsim
 - Is dim6top deprecated by the other two UFO models?
 - O ATLAS plans to use mainly SMEFTsim (flavour symmetry "topU3I") and, if needed, SMEFT@NLO
 - Experimentalists concerns expressed at the LHC EFT WG meetings
 - higher order term (prod+decay)
 - NLO
 - reweighting
 - assumptions
 - EFT gluon interactions

- Area 3: Experimental Measurements and Observables
 - Discussed different approaches for EFT interpretations of measurements:
 - differential cross sections
 - dedicated analyses
 - matrix-element observables
 - machine-learning observables
 - Topics for the write-up:
 - establish a detailed map between EFT
 - operators and experimental observables
 - determine relative sensitivity of observables to operators
 - performing measurements & interpretations: pros and cons of various analyses techniques

- Area 4: Fits and Related Systematics
 - Reviewed the status of fitting frameworks and their validation: EFTfitter, Fitmaker, HEPfit, SFitter,
 SMEFiT, ...
 - Reviewed the status of the fitting experience by ATLAS and CMS
 - Presentation of public experimental results
 - public information should allow for reinterpretations
- Area 5: Benchmark Scenarios from UV Models
 - How do we best interpret EFT analysis in explicit models?
 - A UV model predicts WCs in terms of its parameters matching.
 - The key theoretical aspect is matching the UV model onto EFT at high accuracy
 - The dawn of automated one-loop matching tools
 - SuperTracer: <u>arXiv:2012.08506</u>
 - STrEAM: <u>arXiv:2012.07851</u>
 - Goal: set benchmark scenarios:
 - Interesting phenomenology
 - Validation of different tools.

- Area 6: Flavour Physics
 - o It is a key to a global fit
 - Most of the 2499 dim-6 operators in SMEFT are flavourful
 - Flavor physics reaches into most dimensions
 - Impact of flavour on top/H/EW
 - Indirect constraints on flavor-less operators
 - Flavorful New Physics can manifest itself in different observables
 - To be able to address these cases it is important to perform EFT fits keeping the complete flavor dependence

SMEFT@NLO vs. SMEFTsim

	SMEFT@NLO 1.0	SMEFTsim topU3I	SMEFTsim top
Quark sector flavor sym.	U(2) _q x U(3) _d x U(2) _u	$U(2)_q \times U(2)_d \times U(2)_u$	$U(2)_q \times U(2)_d \times U(2)_u$
Lepton sector flavor sym.	$[U(1)_{l} \times U(1)_{e}]^{3}$	U(3) _I × U(3) _e	$[U(1)_{l} \times U(1)_{e}]^{3}$
QCD order	LO or NLO	LO	LO
CP violating terms	omitted	present	present
Summary	Most operators identical to SMEFTsim, there are few differences in the sign convention or basis rotations	More operators with b-quark fields wrt SMEFT@NLO	More operators with b-quark fields wrt SMEFT@NLO

ttV operators: ttZ impact of systematics on the Wilson coefficients

Source	c_{tZ}	c_{tW}	$c_{\varphi \mathrm{Q}}^{3}$	$c_{ m \phi Q}^-$	$c_{\varphi t}$
tZq normalization	< 0.1	< 0.1	1.2	0.1	0.8
tīZ normalization	0.6	< 0.1	0.4	37	38
tWZ normalization	0.1	0.1	< 0.1	0.7	2.1
Background normalizations	< 0.1	< 0.1	6.9	3.6	6.8
NPL background estimation	1.4	0.2	5.6	0.3	3.8
Jet energy scale	< 0.1	< 0.1	0.8	0.7	2.3
Jet energy resolution	< 0.1	< 0.1	< 0.1	< 0.1	1.4
$p_{ m T}^{ m miss}$	< 0.1	< 0.1	< 0.1	< 0.1	0.2
b tagging	< 0.1	< 0.1	0.9	2.0	0.3
Other (experimental)	< 0.1	< 0.1	1.6	0.8	0.6
Lepton identification and isolation	0.4	0.4	1.2	2.2	0.8
Theory	2.1	1.1	0.4	0.9	0.9

measurement dominated by systematics

double-minima structure

Effective field theory in the top quark sector towards more general fits

 selecting events with either 2 leptons with the same charge or more than two leptons (+ jets, including b-tagged ones)

